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Experiments on the formation of hollow nanocrystals by way of Kirkendall porosity resulting
from a vary large Kirkendall effect have been reported recently by Yin et al. (Science, Vol 304,
2004, p 711). In the present paper, there is a discussion of some theoretical aspects of this process
using chemical diffusion theory in the formal absence of vacancies at equilibrium. A formal
description of the observed nanoscale Kirkendall effect is given that accompanies this process.
A set of Monte Carlo simulations of the process are performed to verify the theoretical findings.

1. Introduction

Recently, Yin and colleagues at the University of Cali-
fornia in Berkeley!'**! found that when isolated nanocrystals
of cobalt are exposed to sulfur at 180 °C, the initially solid
nanocrystals quickly turn to hollow spheres of cobalt sul-
fide. The experiments have been repeated with various other
combinations of materials to form nanospheres of cobalt
oxide, cobalt selenide, and iron oxide. The nanospheres thus
formed are also remarkably uniform: the size of the cavity
varies no more than 13% in any given batch. The uniformity
and apparent versatility of the nanospheres have suggested
a wide range of applications, including drug delivery sys-
tems, optics, electronics, and selective chemical reactors, all
on the nanoscale. It has even been possible to produce iso-
lated catalyst platinum particles within the hollow shells. It
is believed that because the diffusion rate of cobalt is much
larger than that of sulfur, during interdiffusion a single large
pore forms in the cobalt as a result of Kirkendall porosity."!

The usual assumption in analyzing interdiffusion is that
vacancy sources and sinks are sufficiently numerous and
efficient that the vacancies can be considered always to be
at equilibrium. It is known that in general, nanocrystals have
a very high degree of perfection with fewer vacancies being
present than in micron-sized material. Sources and sinks
would have to be at the surfaces of the nanocrystals. The
above strongly suggests that the vacancies cannot be con-
sidered to be at equilibrium during interdiffusion at the nano
level. A similar situation might also reasonably be expected
in any interdiffusion couple in at least some of the region
between the sources and sinks of vacancies. Because the
theory of interdiffusion under these conditions is rather
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poorly developed, we have undertaken a general analytical/
computer simulation study to explore the phenomenon.

2. Theory

The authors consider an interdiffusion couple prepared
as two layers with a total width d of about 100 lattice planes.
The internal layer (§, = & = &) consists of A, which is
considered to be a much faster diffuser than the external
layer, which is of material B (§, = § =&, &, — &, = d). For
definiteness, assume that the ratio of exchange frequencies
wua/wg = 100. Also assume that the total vacancy flux
through the couple is non-zero because the diffusion couple
is moving (growing at external boundary and disappearing
at the internal boundary with no vacancy sinks and sources
within the diffusion couple) during the interdiffusion pro-
cess. The overall vacancy concentration is small enough to
assume that the atomic fractions c, + cg = 1.0. Two frames
of reference are considered (coordinate systems). One is
“frozen” into the crystal planes. The other system is a mov-
ing coordinate system having a velocity v (in the spherical
geometry the velocity v is a function of time and radius).

In the following analysis the authors will not make the
usual assumption that the driving force from vacancies is
zero. For the fluxes in the lattice frame there are the fol-

lowing Onsager expressions for the fluxes!*!:

Ta = Laa(Xy — Xy) + Lyg(Xs — Xy)

Tp = Lag(Xy = Xy) + Lgp(X — Xy) (Eq 1)
and

IS = cANv(r,1) + A(r,1)

Iy = cgNv(rt) — A(r,1) (Eq2)

where N is the total number of sites per unit volume, the L;;
are the Onsager phenomenological coefficients, and the
driving forces X; are given by —V,; and the p;, the chemical
potentials of species i, are given by kT In c¢; where c; is the
site fraction of species i (assume ideal mixing of the com-
ponents). The first terms in Eq 2 are drift terms and are the
result of the (total) vacancy flux, and the second terms

430 Journal of Phase Equilibria and Diffusion Vol. 26 No. 5 2005



are purely “diffusive” contributions to the fluxes. From
Eq 2 the vacancy flux is:

IV =3+ ) =~(ca+ cy)Nv(r1) (Eq3)
The fluxes in the moving coordinate system are
Jy=A(rt) Jyg=-A(rt) Jy=Nv(nt) (Eq 4)

After eliminating the functions A(r,t) and Xy, from Eq 1 and 2:

LDy + LyD',

JA=-D\Ve, - L, X, = 7

Ve, +fANv

LDy + LgD'

Jy=-DpVe, — LpX, = 7

Ve, + IB Nv  (Eq5)

where L; = L;; + Lyg and L = L, + Ly and, with the usual

expressions for the intrinsic diffusion coefficients™):

Ly L Ly L
L ZAA _ TAB 1_ Les  Lap
b A_d)kT(NcA NCB> Dy d)kT(NcB NcA> (Eq6)

The expressions Eq 5 and 6 are the most general ones. Note
that there is only a restriction on a possible functional form
of the velocity v (this form depends on the possible geometry
of the diffusion couple: planar, cylindrical, or spherical).

First, apply the Darken formalism™' to the relations in Eq
5. In the Darken formalism it is assumed that:

Nc, D% NcgDi§
Lyp= kT BB = kT

(Eq7)

ap=0

where D% and Dj are the tracer diffusion coefficients of the
species A and B. The fluxes are:

D4DiN e D%

0 &dbVe, +

AT FkT

Ny

D% [ D§N
= —7 F (bVCA - CANV

D§ ( DEN
=7\ %r &dVe, + cgNy

with the expression for X, as:

(Eq 8)

D — DN Nv
XV:M(bVCA__

kTF F (Eq 9)
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where F = c,D¥ + cgDg. From Eq 9 it is clear that when v
= 0 (and therefore JY, = 0) and Ve, # 0 then Xy, # 0. (This
will mean that the vacancy concentration in the couple may
not be constant even with a zero vacancy flux.) Conversely,
if Xy = 0 then J% # 0.

Next, we apply the Manning formalism'®”! and compare
the resulting expressions with the Darken expressions in
Eq 8 and 9. In the Manning formalism (for the connection
between chemical and tracer diffusion coefficients) the re-
lations for the binary system are:

| _NeDp (| 2eD%
AT T MF
| _NeDj (- 26Dy
BB~ 4T M,F
cacgDXDEN

where M, = 2f,/(1 — f,) where f; is the geometric tracer
correlation factor for the structure.
The application of Eq 10 to Eq 5 gives:

0

AT FkT

D% (DN
=7 Wd}VcA—CANv

D%DEN cgDE
e SVe, + BB

DiDiN D

cpt F Nv

0_
B™ FkT

Ny

D [ DXN
=F W¢VCA+CBNV (Eq 11)

(D§-DYN
y= T e, (Eq 12)

Comparing Eq 8 and 11 there is no difference between
the applications of the Darken or Manning formalism to the
general flux equations describing the interdiffusion experi-
ment. This is a very surprising result. On the other hand,
there is (possibly) a significant difference between the ex-
pressions for Xy;: Eq 9 and 12. For example, with the usually
accepted assumption that Xy, is equal to O for interdiffusion,
there is the well-known result:

Ja=-D\Ve, Jy=DyVe, Jy=(Dy—Dy)Ve, (Eql3)

These equations contain only intrinsic diffusivities and the
difference between them. The Darken formalism gives:
Dy=Did Dj=Did

D\ — Dy = (D% - D) (Darken) (Eq 14)
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whereas the Manning formalism gives:

. DiDi(fy— cy) + DY)

A_ foFf
. DD}y — ) + DY)
B ﬁ)F
1 . DX-Dg
D,—Dg= f— ¢ (Manning) (Eq 15)
0

3. Numerical Simulation

The problem of interdiffusion at the nanoscale described
above allows for three different geometries: planar, cylin-
drical, and spherical. The experiments forming hollow
nanocrystals were done for spherical geometry.!'*! Under
the assumption that at the initial time ¢+ = 0 there is no
material at r = 0 the general behavior of the interdiffusion
couple in the spherical geometry can be modeled perfectly
by the problem in planar geometry. Because of this, for the
purposes of this paper the authors performed numerical
simulations in a planar geometry. The velocity v = v(&,1) (&
is the coordinate perpendicular to the interface plane be-
tween A and B, w,/wg = 100, 7 is time) then becomes a
function independent of spatial coordinate &: v = (). In the
numerical algorithm the left boundary of the couple is mod-
eled (slower diffuser end) as an active vacancy source and
the right boundary as an active vacancy sink (faster diffuser
end). The initial distribution of A and Bisc, = 1 — ¢y, ¢
=0at05>&=01;andcg = 1 —cy,cpa = 0at09 =
£=0.25.

4. Results

Three cases of the boundary conditions were considered
for the vacancy concentration. In the first, ¢y (§ = 0.9,1) =
0.0; cy(¢ = 0.1,r) = constant. The results for this case are
shown in Fig. 1 and 2. There is no movement of the speci-
men in this case because of the superimposed vacancy gra-
dient working against it. Therefore J% = 0 and the atomic
concentrations are ‘“‘symmetric.” As time progresses the va-
cancy and atoms gradually become distributed homog-
enously through the diffusion couple.

In the second case cy(§ = 0.9,1) = cy(§ = 0.1,0) =
constant. The results for this case are shown in Fig. 3 and 4.
During interdiffusion, the diffusion couple moves some
25% of its length, creating further porosity. Anomalous be-
havior (compared with standard interdiffusion couples) of
the atomic and vacancy profiles occurs because there are no
active vacancy sources and sinks within the diffusion zone.
At short times, vacancies are depleted quickly on the slow
diffuser side. Continued depletion occurs before the couple
starts moving (top part of Fig. 4). Once the vacancies are
taken directly from the left boundary (modeled as an active
source of vacancies in the computer simulation), the move-
ment of the couple starts. At the same time, the interdiffu-
sion process proceeds in the usual way (the top part of Fig.
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Fig. 1 Results of the numerical simulation of the interdiffusion
problem with the first combination of the vacancy boundary con-
ditions after time #, 10z, and 100r (starting from the top). @: con-
centration of the faster A atomic component; O: concentration of
the slower B atomic component
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Fig. 2 Results of the numerical simulation of the interdiffusion
problem with the first combination of the vacancy boundary con-
ditions after time 7, 10z, and 100z (starting from the top). [: va-
cancy concentration distribution

3 shows symmetric atomic concentration profiles). Once
movement starts, the interdiffusion process is somewhat ac-
celerated (middle parts of Fig. 3 and 4). At some stage there
is no need for vacancy depletion any longer, and the active
sink (right boundary) stops, but the active source is still in
operation until both the vacancy and atomic concentrations
become constant across the sample (end of interdiffusion
process: bottom parts of Fig. 3 and 4).

In the third case, ¢ (§ = 0.9,f) = constant; ¢y (§ = 0.1,7)
= 0.0. The results for this case are shown in Fig. 5 and 6.
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Fig. 3 Results of the numerical simulation of the interdiffusion
problem with the second combination of the vacancy boundary
conditions after time 7, 10z, and 100z (starting from the top). @:
concentration of the faster A atomic component; O: concentration
of the slower B
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Fig.4 Results of numerical simulation of the interdiffusion prob-
lem with the second combination of the vacancy boundary condi-
tions after time 7, 10¢, and 100¢ (starting from the top). [J: vacancy
concentration distribution

In this case, the rate of total interdiffusion is enhanced
greatly by the vacancy gradient. The vacancy gradient pro-
duces a movement of the specimen because of a correspond-
ing segregation or demixing. That is exactly what seems to
be happening at advanced stages of the process. For planar
geometry, this case allows for a steady state to be reached.
Cylindrical and spherical geometries for this case must have
a “final” stage of interdiffusion-segregation process at
which the internal and external radii reach their maxima and
the width d its minimum.
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Fig. 5 Results of the numerical simulation of the interdiffusion
problem with the third combination of the vacancy boundary con-
ditions after time #, 10z, and 100z (starting from the top). @: con-
centration of the faster A atomic component; O: concentration of
the slower B
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Fig. 6 Results of the numerical simulation of the interdiffusion
problem with the third combination of the vacancy boundary con-
ditions after time ¢, 10¢, and 100z. [J: vacancy concentration

5. Conclusions

Experiments on the formation of hollow nanocrystals by
way of Kirkendall porosity resulting from a large Kirkendall
effect have been reported recently by Yin et al.'"*! In the
present paper, we have developed a description of interdif-
fusion in a binary interdiffusion couple in the formal ab-
sence of vacancies at equilibrium. A formal description of
the observed nanoscale Kirkendall effect is given that ac-
companies this process. A set of Monte Carlo computer
simulations of the process were performed to explore the
theoretical/experimental findings.
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